domingo, 8 de marzo de 2015

CAÍDA LIBRE

Se le llama caída libre al movimiento que se debe únicamente a la influencia de la gravedad.
  • Todos los cuerpos con este tipo de movimiento tienen una aceleración dirigida hacia abajo cuyo valor depende del lugar en el que se encuentren. En la Tierra este valor es de aproximadamente 9,8 m/s², es decir que los cuerpos dejados en caída libre aumentan su velocidad (hacia abajo) en 9,8 m/s cada segundo .
  • En la caída libre no se tiene en cuenta la resistencia del aire.
La aceleración a la que se ve sometido un cuerpo en caída libre es tan importante en la Física que recibe el nombre especial de aceleración de la gravedad y se representa mediante la letra g.

Lugarg (m/s²)
Hemos dicho antes que la aceleración de un cuerpo en caída libre dependía del lugar en el que se encontrara. A la izquierda tienes algunos valores aproximados de g en diferentes lugares de nuestro Sistema solar. Para hacer más cómodos los cálculos de clase solemos utilizar para la aceleración de la gravedad en la Tierra el valor aproximado de 10 m/s² en lugar de 9,8 m/s², que sería más correcto.
Mercurio2,8
Venus8,9
Tierra9,8
Marte3,7
Júpiter22,9
Saturno9,1
Urano7,8
Neptuno11,0
Luna1,6

En el gráfico y en la tabla se puede ver la posición de un cuerpo en caída libre a intervalos regulares de 1 segundo.Para realizar los cálculos se ha utilizado el valor g = 10 m/s².
Observa que la distancia recorrida en cada intervalo es cada vez mayor y eso es un signo inequívoco de que la velocidad va aumentando hacia abajo.

tiempo (s)  0    1    2    3    4    5    6    7  
posición (m)0-5-20-45-80-125-180-245

Ahora es un buen momento para repasar las páginas que se refieren a la interpretación de las gráficas e-t y v-t y recordar lo que hemos aprendido sobre ellas.
Ya hemos visto que las gráficas posición-tiempo y velocidad-tiempo pueden proporcionarnos mucha información sobre las características de un movimiento.
Para la caída libre, la gráfica posición tiempo tiene la siguiente apariencia:

Recuerda que en las gráficas posición-tiempo, una curva indicaba la existencia de aceleración.
La pendiente cada vez más negativa nos indica que la velocidad del cuerpo es cada vez más negativa, es decir cada vez mayor pero dirigida hacia abajo. Esto significa que el movimiento se va haciendo más rápido a medida que transcurre el tiempo.



Observa la gráfica v-t de la derecha que corresponde a un movimiento de caída libre.
Su forma recta nos indica que la aceleración es constante, es decir que la variación de la velocidad en intervalos regulares de tiempo es constante.

tiempo (s)  0  12345
velocidad (m/s)  0   -10  -20  -30  -40  -50 
La pendiente negativa nos indica que la aceleración es negativa. En la tabla anterior podemos ver que la variación de la velocidad a intervalos de un segundo es siempre la misma (-10 m/s). Esto quiere decir que la aceleración para cualquiera de los intervalos de tiempo es:
g = -10 m/s / 1s = -10 m/s/s = -10 m/s²
FORMULAS DE CAÍDA LIBRE

Simulador de caida libre

https://www.youtube.com/watch?v=Eg4iGet_uMY

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO (M.R.U.V)

En este tipo de movimiento a diferencia del MRU (movimiento rectilíneo uniforme), la velocidadvaría. Pero esta variación a su vez es con un cierto orden, es decir que cambia un mismo intervalo en una misma cantidad de tiempo.
Por este hecho aparece una nueva magnitud llamada aceleración. La aceleración está representada por la fórmula:
a = (Vf – Vi) / T
La a es la aceleración, Vi es la velocidad del inicio y Vf es la velocidad final.

Para calcular la distancia recorrida se usa la siguiente fórmula:
D = Vi . T +/- ½ . a . T2

El signo positivo del segundo miembro se usa cuando el movimiento experimenta un aumento en su velocidad. Es una aceleración positiva. El signo menos se usa en situaciones de descenso de lavelocidad, o sea una aceleración negativa. Aquí vemos otra diferencia con respecto al MRU en el cual la distancia se calcula de forma mucho más sencilla.


Con respecto a los gráficos, también veremos otros distintos.
La gráfica de la distancia en función del tiempo tiene una forma parabólica. Esto es porque en la formula de la distancia podemos observar que la relación entre la distancia y el tiempo es cuadrática, o sea, responde a una función cuadrática. Cuando se tienen valores reales es importante colocar la unidad de cada magnitud. Para la distancia por ejemplo en metros y para el tiempo en segundos.
Cuando graficamos la velocidad versus el tiempo observaremos que esta relación corresponde a una función lineal. Ya que se arma a partir de la fórmula de aceleración. La velocidad puede expresarse en mts/seg o Km/h y el tiempo en horas o en segundos.
El último gráfico es la relación entre la aceleración y el tiempo. Para entenderlo mejor se grafica un ejemplo con valores. La a se expresa en mts/seg2 y el tiempo en seg. Se ve que un móvil que posee una a de 2 mts/seg2 y luego de un tiempo frena cambiando a una a negativa de por ejemplo 3 mts/seg2.

MOVIMIENTO RECTILÍNEO UNIFORME

El movimiento rectilíneo uniforme (MRU) fue definido, por primera vez, por Galileo  en los siguientes términos: "Por movimiento igual o uniforme entiendo aquél en el que los espacios recorridos por un móvil en tiempos iguales, tómense como se tomen, resultan iguales entre sí", o, dicho de otro modo, es un movimiento de velocidad v constante.
El MRU se caracteriza por:
a) Movimiento que se realiza en una sola dirección en el eje horizontal.
b) Velocidad constante; implica magnitud, sentido y dirección inalterables.
c) La magnitud de la velocidad recibe el nombre de rapidez. Este movimiento no presenta aceleración (aceleración = 0).
Concepto de rapidez y de velocidad
Muy fáciles de confundir, son usados  a menudo como equivalentes para referirse a uno u otro.
Pero la rapidez (r) representa un valor numérico, una magnitud; por ejemplo, 30 km/h.
En cambio la velocidad representa un vector que incluye un valor numérico (30 Km/h) y que además posee un sentido y una dirección.
Cuando hablemos de rapidez habrá dos elementos muy importantes que considerar: la distancia (d) y el tiempo (t), íntimamente relacionados.
Así:
Si dos móviles demoran el mismo tiempo en recorrer distancias distintas, tiene mayor rapidez aquel que recorre la mayor de ellas.
Si dos móviles recorren la misma distancia en tiempos distintos, tiene mayor rapidez aquel que lo hace en menor tiempo.
Significado físico de la rapidez
La rapidez se calcula o se expresa en relación a la distancia recorrida en cierta unidad de tiempo y su fórmula general es la siguiente:
x
Donde
v = rapidez         d = distancia o desplazamiento    t = tiempo
Usamos v para representar la rapidez, la cual es igual al cociente entre la distancia (d) recorrida y el tiempo (t) empleado para hacerlo.
Como corolario, la distancia estará dada por la fórmula:
Movimiento_R_002
Según esta, la distancia recorrida por un móvil se obtiene de multiplicar su rapidez por el tiempo empleado.
A su vez, si se quiere calcular el tiempo empleado en recorrer cierta distancia usamos
Movimiento_R_003
El tiempo está dado por el cociente entre la distancia recorrida y la rapidez con que se hace.